61 research outputs found

    Protocol for dissecting cascade computational components in neural networks of a visual system

    Get PDF
    Finding the complete functional circuits of neurons is a challenging problem in brain research. Here, we present a protocol, based on visual stimuli and spikes, for obtaining the complete circuit of recorded neurons using spike-triggered nonnegative matrix factorization. We describe steps for data preprocessing, inferring the spatial receptive field of the subunits, and analyzing the module matrix. This approach identifies computational components of the feedforward network of retinal ganglion cells and dissects the network structure based on natural image stimuli.For complete details on the use and execution of this protocol, please refer to Jia et al. (2021).

    Exploring Asymmetric Tunable Blind-Spots for Self-supervised Denoising in Real-World Scenarios

    Full text link
    Self-supervised denoising has attracted widespread attention due to its ability to train without clean images. However, noise in real-world scenarios is often spatially correlated, which causes many self-supervised algorithms based on the pixel-wise independent noise assumption to perform poorly on real-world images. Recently, asymmetric pixel-shuffle downsampling (AP) has been proposed to disrupt the spatial correlation of noise. However, downsampling introduces aliasing effects, and the post-processing to eliminate these effects can destroy the spatial structure and high-frequency details of the image, in addition to being time-consuming. In this paper, we systematically analyze downsampling-based methods and propose an Asymmetric Tunable Blind-Spot Network (AT-BSN) to address these issues. We design a blind-spot network with a freely tunable blind-spot size, using a large blind-spot during training to suppress local spatially correlated noise while minimizing damage to the global structure, and a small blind-spot during inference to minimize information loss. Moreover, we propose blind-spot self-ensemble and distillation of non-blind-spot network to further improve performance and reduce computational complexity. Experimental results demonstrate that our method achieves state-of-the-art results while comprehensively outperforming other self-supervised methods in terms of image texture maintaining, parameter count, computation cost, and inference time

    Spike timing reshapes robustness against attacks in spiking neural networks

    Full text link
    The success of deep learning in the past decade is partially shrouded in the shadow of adversarial attacks. In contrast, the brain is far more robust at complex cognitive tasks. Utilizing the advantage that neurons in the brain communicate via spikes, spiking neural networks (SNNs) are emerging as a new type of neural network model, boosting the frontier of theoretical investigation and empirical application of artificial neural networks and deep learning. Neuroscience research proposes that the precise timing of neural spikes plays an important role in the information coding and sensory processing of the biological brain. However, the role of spike timing in SNNs is less considered and far from understood. Here we systematically explored the timing mechanism of spike coding in SNNs, focusing on the robustness of the system against various types of attacks. We found that SNNs can achieve higher robustness improvement using the coding principle of precise spike timing in neural encoding and decoding, facilitated by different learning rules. Our results suggest that the utility of spike timing coding in SNNs could improve the robustness against attacks, providing a new approach to reliable coding principles for developing next-generation brain-inspired deep learning

    One Forward is Enough for Neural Network Training via Likelihood Ratio Method

    Full text link
    While backpropagation (BP) is the mainstream approach for gradient computation in neural network training, its heavy reliance on the chain rule of differentiation constrains the designing flexibility of network architecture and training pipelines. We avoid the recursive computation in BP and develop a unified likelihood ratio (ULR) method for gradient estimation with just one forward propagation. Not only can ULR be extended to train a wide variety of neural network architectures, but the computation flow in BP can also be rearranged by ULR for better device adaptation. Moreover, we propose several variance reduction techniques to further accelerate the training process. Our experiments offer numerical results across diverse aspects, including various neural network training scenarios, computation flow rearrangement, and fine-tuning of pre-trained models. All findings demonstrate that ULR effectively enhances the flexibility of neural network training by permitting localized module training without compromising the global objective and significantly boosts the network robustness

    Neural System Identification with Spike-triggered Non-negative Matrix Factorization

    Get PDF
    Neuronal circuits formed in the brain are complex with intricate connection patterns. Such complexity is also observed in the retina as a relatively simple neuronal circuit. A retinal ganglion cell receives excitatory inputs from neurons in previous layers as driving forces to fire spikes. Analytical methods are required that can decipher these components in a systematic manner. Recently a method termed spike-triggered non-negative matrix factorization (STNMF) has been proposed for this purpose. In this study, we extend the scope of the STNMF method. By using the retinal ganglion cell as a model system, we show that STNMF can detect various computational properties of upstream bipolar cells, including spatial receptive field, temporal filter, and transfer nonlinearity. In addition, we recover synaptic connection strengths from the weight matrix of STNMF. Furthermore, we show that STNMF can separate spikes of a ganglion cell into a few subsets of spikes where each subset is contributed by one presynaptic bipolar cell. Taken together, these results corroborate that STNMF is a useful method for deciphering the structure of neuronal circuits.Comment: updated versio

    A Novel Noise Injection-based Training Scheme for Better Model Robustness

    Full text link
    Noise injection-based method has been shown to be able to improve the robustness of artificial neural networks in previous work. In this work, we propose a novel noise injection-based training scheme for better model robustness. Specifically, we first develop a likelihood ratio method to estimate the gradient with respect to both synaptic weights and noise levels for stochastic gradient descent training. Then, we design an approximation for the vanilla noise injection-based training method to reduce memory and improve computational efficiency. Next, we apply our proposed scheme to spiking neural networks and evaluate the performance of classification accuracy and robustness on MNIST and Fashion-MNIST datasets. Experiment results show that our proposed method achieves a much better performance on adversarial robustness and slightly better performance on original accuracy, compared with the conventional gradient-based training method
    • …
    corecore